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ABSTRACT

Flexural deflections of several plates and beams under

an unknown transverse, concentrated, time dependent force

are solved for various edge conditions. The consideration of

displacements and the use of Hertz's law of impact at the

point of contact lead to a non-linear integral equation for

the contact force in all cases of transverse impact. Two

methods which are developed in the previous report are then

used to treat this equation: (a) Generalized Galerkin Method;

(b) Collocation Method. Formulas for the maximum contact

force and contact time are obtained which apply to all elastic

impact problems. With the aid of various curves given in

this report calculation can be shortened to a minimum. Im-

pacts on circular and rectangular plates are studied in

detail.

-1-



1. Introduction

To determine the deflection and stresses in a beam or a

plate struck transversely by an elastic body one must know

the local compression - contact force relationship and the

flexural deflection under an unknown concentrated time de-

pendent contact force. A solution for the first is to use

the Hertz law of impact [2], [3], and [4], which is known

to have a wide range of applicability [5]. The flexural

deflections, on the other hand, can be determined by using

the classical theory of vibrations of beams and plates. Con-

sideration of the displacement at the point of contact then

leads to a non-linear integral equation for the contact force.

Various authors studied the problem of central impact of a

sphere on a simply supported beam previously. A discussion

of various methods given by these authors is presented in

Il].

The impact problems involving beams with different

types of support conditions and plates with different shapes

and non-central impact problems are as yet untouched, except

for the paper by K. Karas [6]. He treats the problem of

central impact on simply supported, rectangular plates using

the method given by Lennertz and the step-by-step integration

method used by Timoshenko for the beam problem. A criticism

of these methods may be found in [1] also. Briefly, the

method introduced by Lennertz oversimplifies the problem

-2-
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leading to large discrepancies between the correct and approxi-

mate contact forces, while the step-by-step integration method

presents a tedious process and must be carried out for each

individual problem.

In the present report, the problem of non-central impact

on beams and plates having general edge conditions is

formulated in such a way as to unify the transverse impact

problems. Consequently, for the free transverse oscillation

problem leading to normal modes, the integral equation of

impact can be written very shortly. Explicit forms for the

integral equations are given for the following cases:

(a) Beams:

1) Simply supported beams

2) Beams having both ends clamped

3) Cantilever beams

(b) Circular Plates:

1) Simply supported circular plates

2) Circular plates with clamped outer edge.

(c) Rectangular Plates:

1) Simply supported at all edges

2) Simply supported at two parallel edges and

clamped at the others.

Two general methods are then used to obtain approximate

solutions of the integral equations of contact force:
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(a) Generalized Galerkin Method

(b) Collocation Method.

Discussion of these methods is given in [1].

Explicit formulas are given for the maximum contact force

and for the contact time for various different types of shape

functions. Plots are made for various functions to facilitate

computation for a given problem. In particular, beams,

circular plates and rectangular plates with simply supported

edges are studied in detail.



2. Formulation of the Problem

A beam or a plate is struck transversely by a mass m

having a spherical surface at the point of contact, and

striking velocity vo  , (Fig. 1).

The problem is to determine: the contact force F(t)

deflection w(x,y,t) and the flexural stresses.

Deflection and the stresses are functionals of the

contact force F(t) . Consequently, F(t) must be determined

first.

The formulation of this problem can be effected only

under certain assumptions, namely: (a) all assumptions of

the classical theory of plates or beams are applicable;

(b) the Hertz law of impact is valid. The last assumption

states that:

a - k F2 / 3 (t) (1)

where a is the relative approach of striking bodies and

k is the Hertz constant [1], [2], [3]. The relative

approach is the difference between displacements of the plate

and the striking body measured from the instant of initial

contact (Fig. 1). Hence:

a ws - wO  (2)

-5-
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where w. is the displacement of the sphere under the action

of the force F(t) and wo  is the deflection of the plate

at the point of contact. Here w. is given by:

1itws  v0t - 1i X (t- ) F(r)dr (3)
0

The deflection of the beam or the plate is in turn ob-

tained by solving the following differential equation:

DA2w + p d2w (gDA q(x,y,t) (4)

D - Eh 3 /12(1 - v2) A d2 + a2(5
.d 2  d 2

Here E is Young's modulus, h is the thickness, p is

the weight density per unit area, g is the acceleration

due to gravity, q is the load per unit area. Equation (4)

reduces to beam equation if one takes EI for D and

y - 6/dy - 0. In this case, p and q must be interpreted

as the weight density and the load per unit length. In the

following analysis beam and plate problems are interpreted

as one. The difference is in the additional dimension y

and the interpretation of D and p which can be adjusted

easily to the method of solution. The resulting formulas,

however, will be given separately for beams and plates.

The concentrated load F(t) is obtained as a limiting

process of a uniformly distributed load q over a small
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area e2 having the shape of the plate boundary. In beams,

q is distributed uniformly over a range e . Thus, by

letting q--*oo while e--*O, the contact force F(t) is

obtained:

F(t) - lim f q dA (6)

e - 0 (A)

q oD

Hence equation (4) with q subject to (6) must be solved

under initial and boundary conditions to obtain w . Once

this is done, the force F(t) can then be evaluated by

solving the integral equation obtained by combining equations

(1) to (3), namely:

kF2 13 (t) = vot " - (tor) F(,r) d - Wo (7)
0



3. Flexural Deflection

Deflection w of a plate or a beam is uniquely deter-

mined when equation (4) is solved under appropriate initial

and boundary conditions. Initial conditions are:

w(x,y,O) - 0 w(xyO) - 0 (8)

where the dot represents differentiation with respect to

time. Boundary conditions used in practice have great

variety. These conditions consist of specifying any two

of the following four quantities or their linear combinations

on the boundary:

Given: w , dw/dn , Mn , Vn (9)

Here n represents the external normal-to the boundary curve

and Mn is the bending moment and Vn is the transverse

shear resultant which is represented by the Kirchhoff condition

in the classical plate theory.

In what follows, first a general solution of equation (4)

is found which satisfies initial conditions (8) and some

arbitrary boundary conditions.

Dirac-delta function S(x - x ) is defined by:
0

(cx for x - x
~(x -x o) - ~ 0 andf(AB~x 0 co for xo nd 8(X-xO)b (y-yo )dA - 1

0 for x x 0  (A)

(10)

-8-
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where the double integral in equation (10) is taken over the

whole area A of the plate. After Schwartz's book [7],

the old argument about the existence of such a function can

be looked upon as a solved problem.

Let the time dependent concentrated load F(t) be

applied to the point with coordinate (xo, yo) . Differential

equation (4) can be written in a convenient form by using

equations (6) and (10):

DA2w + (P/g) w - 8(x-x o ) 8 (y-yo) F(t) (11)

The solution of this equation is a linear, homogeneous

functional of F(t). Thus:

t
w(x,y,t) X J G(x,y,t-T) F( ) d- (12)

0

Substitution of equation (12) into equations (11) and (8)

gives:

DA2G + (p/g) G -0 (13)

G(x,y,O) - 0 , (pfg)G(x,y,O) - B(x-x o ) S(y-y o ) (14)

The general solution of equation (13) satisfying the first

initial condition given by the first of equations (14) and all

boundary conditions is:

G - E amn gmn (xy) sin ant (m,n w 1,2,...) (15)
m,n
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where amn are arbitrary, and gmn(x,y) are free of arbi-

trary constants and satisfy all boundary conditions and the

differential equation:

A2 gmn - Pmn 4gmn - 0 (16) Pmn4  PCLmn2/gD (17)

Functions gmn are the eigenfunctions. Quantities pmn are

the eigenvalues and are determined from a frequency equation

which will be known when the boundary conditions are explicitly

given. amn must now be determined from the second of

equations (14) :

E (p/g)a mnamngmn (Xy) - (x-x O) 8(y-yo) (18)
m,n

When the eigenfunctions are not orthogonal this represents a

difficult problem and there is no universal method of deter-

mining the amn * In many cases it is possible to use the

method used for orthogonal eigenfunctions except that the

series (15) must be employed to sum the resulting series.

In many important practical problems the eigenfunctions are

orthogonal. Consequently, amn can be determined simply by

multiplying equation (18) by grs , integrating over the

total area of the plate and considering the condition of

orthogonality:
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nn for r - m, n- s

(A) gmngrs dA forrm n s (19)

Hence:

amn- gmn(XoYo) g1P bmnmn (20)

Consequently:

w(x,yt) - (g/P) mn (1/bmn)gmn(xoY o ) gmn(xy)

tje(l/amn) F(T)sin amn(t-T)d 21

0

The deflection at the point of contact is therefore found to

be:

t
wo  (2/M) E cmn (i/amn) F() sin amn(t-r) dr (22)

m,n o

C(mnx mn (XoYo) A/2bmn (23)

where A is the total area in case of plates and total length

in case of beams, and M is the total mass.

When the free vibration problems of beams or plates are

solved the eigenfunctions gmn and eigenvalues pmn

(consequently amn ) will be known. Thus, the determination

of brn from equation (19) and cmn from (23) presents no

difficulty.

_____,
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A few practical examples for beams and plates are given

below. In all examples given below, the eigenfunctions are

represented by gn or gmn and the frequency equation is

marked by (F.E.). Symbols n and m represent positive

integers.

a) Beams. Eigenfunctions and eigenvalues of the follow-

ing examples are known [8]. Thus, bn and cn are cal-

culated by using Equations (19) and (23) above, since in all

cases the eigenfunctions are orthogonal. The origin is at

one end of the beam.

1) Simply supported beams

gn(x) - sin nnx/L a on - n44g EI/p L 4  (F.E.) (24)

bn inL/2 , cn -sin n xo/L

2) Beams having both ends clamped

sinhjp (2x-L) sin Pn (2x-L)

gn (x) - sinh-pnL sintpn

cos pnL - sech pnL (F.E.) (25)

n PnL + sinh pnL pnL + sin pnL

bn n 1-cosh PnL 1-cospnL ]

2cn " g (Xo)L/2 bn
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3) Cantilever beams clamped at x - 0

cosh pnx- cos pnx sinh pnx sin pnxgn(x)m-
n cosh pnL + cos pnL sinh pnL + sin pnL'n n

cos pnL - - sech PnL (F.E.) (26)

b W-2 cos pnL - cosh pnL

n  nn n sin pnL + sinh pnL 

cn -gn 2 (xo) L/2b J

4) Beams pinned at x - 0 and clamped at x - L

sinh pnx sin pnxgn~x  sinh p nL "sin p n L

tan pnL - tanh pnL (F.E.) (27)

bn  L (sin-2 pnL sinh 2 pnL)

2

Cn - gn (xO ) Lf2bn

b) Circular Plates. Eigenfunctions and eigenvalues

of the following examples are known [8]. Equations (19) and

(23) above give bn and cn' respectively, since in both of

these cases the eigenfunctions are orthogonal. The origin is

taken at the center of the plate. The outer radius is a

Polar coordinates r and e are used.
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1) Simply supported circular plate

gmn(r,e) - [Jn(pmr) + B In(pmr)lsin (ne + yo)

(28)

B Jn(Pm a)/I n(pma)

where Jn and In are the Bessel functions of the first

kind with real and imaginary arguments.

In+1 (Pma) Jn+1 (pma) 2pmaIn(ra n+Po ) " -Y (F.E.) (29)

1 (57TT n (Pma) -

Here v is the Poisson's ratio.

bmn= 2na2  n2(pn a ) [1 + v + 2n 2(,pma) 2pma Jn+l(pma)

bmn n n v - --iv in (Pma)

Cmn - gmn2 (ro" 90 ) na
2 /2bmn 

(30)

2) Circular plate clamped at the outer edge

gmn(r,e) - [Jn(Pmr) + B In(pmr)] sin (ne + yo)

j(31)
B- n(Pma) /In (pra)

Jn+l (Pma) + nfl 0(poa)

nno (F..) (32)
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bmn - 2na 2 .n 2 (pma) Cmn - gmn 2 (rooeo)/4Jn 2 (Pma)

(33)

c) Rectangular Plates. For rectangular plates a quick

method similar to the one used for beams can be used to

obtain boundary conditions which will produce orthogonal

eigenfunctions.

The following is constructed from Equation (16):

b a 24 baX X (grsA gmn - gmn A2grs ) d x d y - (Pmn 4 _ Prs )J X gmngrsdXdy
0 0 0~n 0

(34)

Integration by parts of the left side of this equation leads

to:
132

4 A b a b c mn dgrs d2gmn
gmngrsdxdy -f [grr

(35)

02 grs dgn d3 grs d2grs agmn 3grs x - ady
x 2  x " mn 2 =X 0y 0 x  x 0

ax x a dy dx
0

and a similar equation for y - 0 and b , which may be

obtained by interchanging x with y . The bracket on the

right side of equation (35) is zero for two types of practical

boundaries -- namely, simple support and clamped edge. Con-

sequently, these two types of support conditions in any order
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lead to normal modes. Many other conditions can be obtained

by making the bracket on the right side of Equation (35)

zero, with the proper choice of g and its derivatives.

The following two examples are most practical:

1) Rectangular plates simply supported at all edges.

Two perpendicular sides with lengths a and b are taken as

the coordinate axes, origin being at a corner:

gn(X,y) - sin max sin e- I = Pmn 4  (F.E.)gnxya -E' 'Mn P

Pmn2 - [ (mrn/a) 2 + (nn/b) 2 br - ab/4, (36)

mnxo  nnyo

Cmn = 2(sin 0 sin 2

2) Rectangular plate simply supported along x O, a ;

clamped along y - O b.

mn(xy) - cosh ay - cosOy - B(sin~y - sinh ay)

B - (cosh ab - cos~b)/(cos~b - f sinh ab) (37)

CL = [p2 + (mn/a) 2] 0 [p2. (mn/a)2

(cos~b - cosh ab) 2 + (sinlb - sinh ab)

(sin~b + a sinh ab) - 0 (F.E.) (38)
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- ab(1 + *A(sng sinh ab) -1

~i~ii 4 ) sinh ab sin Ob-2 coh bco b
a (39)

(cosh ab + c2 os ab) + 2 (cosh ab + 1;2 cos Pb)3
7 a

Cmn g 2xoyoab/2bmn



4. The Integral Equation

In the previous chapter it is shown that in all impact

problems the flexural deflection at the point of contact is

given by Equation (22). The integral equation (7) of impact

can be written in a common non-dimensional form as:

L(f) a af2/ 3 (x) - x + X K(x-y) f(y)dy 0 (40)
0

f(x) - ToF(Tox)fmvo , K(x) - x + 2 Z mn s irn0 0 m,n W3mn mn

-mfM , x - tT o  , a - k m21 3vo -1 3 T-51 3

0 0
(41)

an = mn To

where To may be chosen in a suitable manner. There cmn

and wmn are given by the solution of the flexure problem.

Another form of Equation (40), which will be used

later, is:

x3/
ao(x) - x + X K(x-y) 03 2 (y) dy 0

0
(42)

W(x) - f213 (x)

-18-



5. Approximate Solutions by Generalized Galerkin Method

The Generalized Galerkin method is developed in [1].

This method gives an approximate solution for any problem

having an equation:

L(f) - 0 (43)

Let a function f which depends on the arbitrary independent

infinitely many parameters (ala 2 ...) and independent

variable x, be chosen such that either df/dai satisfy the

boundary conditions at x - x1 and x = x2 , imposed on

equation (43) or L(f) = 0 there. This function f(x, ala 2 0.o)

obviously will not satisfy equation (43). This function

represents a solution of equation (43) if ai are solutions of

the following set of non-linear algebraic equations:

x2
fL~f(x~ala 2 0.o)] a~i dx = 0 (i - 1,2,o.o) (44)

x1

When i is finite f(xala 2,,,aN) is an approximate

solution.

Various functions of the following type are suitable to

use as f(x,al,a20o..):

(a) f - a1 sin a2 x

(b) f - alsin 2 a2x

-19-
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(c) f " a, sin 31 2 a2x

N-I
(d) f - J ai sin i aNx

i-l

Hence equation (44) takes the form:

X L(f) (af/dai)dx - 0 (i - l,2,...,N) (45)
0

Note that df/da and df/aa 2 for cases (b) and (c) satisfy

the end conditions at x - 0 , n/a 2 . However, in case (a),

one end condition is violated since df/6a2  does not vanish

at x - nja 2 , end of the contact. Nevertheless, in all

examples worked out, very good approximations are obtained.

Cases (b) and (c) give better results than case (a). (See

Pigures 18,19 , and 20.) In case (d) aN is chosen the same

as a2 of case (a) since a2 of case (a) is found to be

nearly equal to its exact value.

Explicit forms of Equation (45) are given below for

cases (a), (b), and (d). Computations are carried out for

cases (a), (c), and (d).

Case (a)

Ci+ 2 .aI) W "4 d. y X 12/3 1

(46)

7 1 +i 3 d yX -/ 1

Taw



-21-

Elimination of X, 2/3 between these two equations leads to:

A1 " 28/[29 - p, (108 + 24aI)]

a 53/ n  15 - lI (8 + 8a I )  (47)
i- 2  " d 2821[29 -p, (108 + 24ai)]"I 3

Case (b)

(n- - + 1  X 1 + d [iy 21, -2/

(48)

Similarly, X\i2/3 can be eliminated from these equations

to obtain equations resembling equations (47).

Case (d)

E (1 + ) X [ - 1) (j -] -K 2. )iiij i a

+ (-i) j + l Ynj -1/ 1 (j - 1,2#060. (49)



-22-

where:

c~m j+ (-1) yE C AN. )F
m,n mn mn

48- E cmn D %

y -a a2 5/3/n d n / r(413),r(ll/3) 1.68257

- E c nD 1 (Xrn) Pi E -ZcinBi (&n
m,n mln

D (Xm.) -Ci - %mn 2 )-2 C014 mn + X n2

2 mn2 -1

Bi - -mn 0./i) 2 -I

(nxmn)-l inn- n

X a i/aN Xm woffa N (ij -12..
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SI I

al- E CmA (\&n) , S - c mnD n )m,n m,n

A' (mn) - 2(2/mn )2 - (1 2)-1 (mn)3

(1- Tmn 2)-2 sinmn

2 12/%mn) (l1i2 1 3

(mn) /mn) mn n tmn

S1(51)

a sinmn -(2/%mn)2(1- fmn2 ) 2 coSmn

d' - (14/5c 1/ 2) r(7/6) / r(5/3)

K12/3 23 ( sin iu)21 3 sin judu (ij - 1,2,...,N)
0 1

(52)

For N - 3, ni have the explicit forms given below which are

obtained by using the binomial expansion.

711 - 1.682621 + 0.101974 (3 W 3/7I)

2 - 1.223724 (2 7Ci 1) (53)

31 - 0.152967 + 1.265714 (3 K3 /O )
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Ai ( mn) , D(%mn) , Bi (%mn ) , Bij (Xmn) , (i f j)
I I

A (mn) , and D (%mn are plotted on Figures 2 to 5. Hence

for any impact problem these curves can be used to sum up

the series involved in the expressions of ai , ij and b.

If the contact time faN is chosen by an approximate method

as suggested by Zener and Feshbach and E. H. Lee [1] or

simply taken as the Hertz time (as this seems to give a better

approximation) then these series can be computed. One can

then, for example in case (a), use the first of equation (46)

to determine the maximum contact force .l " This0 of course,

assumes that the second equation of (46) is satisfied. Since

this will not be the case in practice, this reference contact

time n/a2 may be used on the right sides of equation (46)

to obtain a better a2 and 'A, a

For particular beams and plates this process may be

further shortened by giving curves for 1 , i

In this report this is done for the following simply supported

plate problems under central impact:

(i) Circular plate, Fig. 6

(ii) Square plate, Fig. 7

(iii) Rectangular plate, with afb - 2, Fig. 7

(iv) Rectangular plate with a/b - 4, Fig. 7

Similar curves were given in the previous report for simply
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supported beams under central impact (Fig. 20, [1]). For

other types of beam and plate problems this may be done once

and for all, reducing the problem of impact to a routine

one. Further discussion and application of this method to

various problems are given in Chapter 8.

4,!



6. Collocation Method

This method consists of satisfying the integral equation

(40) or (42) at various characteristic points. In a contact

force curve the important points are: origin, the point of

maximum, the end of the contact time. The contact force

curve differs slightly from a symmetric shape. Thus, choice

of a symmetric curve is reasonable. Let xc be the un-

known non-dimensional contact time. Also let

f(x) = A3X(x) , X(O) - X(xc) " 0 , X(Xc/2) - 1

x (54)
S(x) ' K(x-y) X(y)dy

0

where A3 is the unknown maximum aplitude. Equation (40)

must be satisfied at x Xc /2. Also df/dx obtained from

Equation (40) must be zero at this point. This leads to two

equations to evaluate A and xc , namely:

A3  Sx (xc/2)

xc/2" a O -x23 (xc /2) + S(xc/2) S Xl (xcl 2 )

where:

S (lX(/2) C d S)=

-26-

4
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Equations (55) are also valid if one uses Equation (42) and

choses:

OWx - A 2Y(x) , Y(O) - Y(xc ) - 0 Y(xc /2) - 1

S(x) f Px(x-y) Y 32(y) dy (56)

0

Hence, if a shape function x(x) or Y(x) , having the

conditions stated in Equation (54) or (56), is chosen, A

and xc can be calculated from Equation (55).

Three practical shape functions are:

(a) X(x) - sin nx/xc , (b) X(x) - sin 2 nX/xc

(c) Y(x) - sin x/xc

The results for S and S in these cases may be written:

S(Xc/2) = (xc/) 2(d I + 2AR1 )

S x 2) = (x/) (d2 + 2R 2) (57)

where:
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Case (a)

dI  " d2  Ri  E c CmPi(%n (1 1,2)
m,n

-(1- sin 1)pl(%.mn) - (i-%mn2) I 0m "  i m-i

(mn ) - (1 -mn2 cos (58)

mmn c"mn Xcr

Case (b)

dl w (n 2  4)/16 , d2 - n/4 1
m1 -2 (- 1 2 -1 -2Co1

Pj(l n 4mn tn (1 - 4% m cos.'&n

p2( mnf) = . - (1 2 )-1 sin 1 } (59)

Case (c)

dI - 0.457906 ,R - 0.915310 R1  - 0.Ol30R 1
I N

d2 ' 0.811409 , R2 - 0.915310 R2 - 0.033901R 2

I I

R same as R, of case (a); R2 - same as R2 of case (a)

R1  m, n cmnPl 0 mn), R2  " mn CmnP2 '%mn) (60)

Pl mn) - [1 - 0n/3)2I [ (3Imn) sin n + 11

P N2  
3) 2 - m n/3)2 1 Cos 1

2 mnmn r I-m
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I

Quantities p1 (%mn), p 2 (%mn) 1 % mn), 2 ' ,%mn) given by equations

(58) to (60) are plotted as functions of %mn in Figures 8 to 12.

C, onsequently, for any type of plate problems, series R1 and R2

can be obtained by summing the individual terms given by these

figures. In oarticular, these series summed for simply-

supoorted circular ilates and simply-supported rectangular plates

with the side ratios a/b = 1, 2 and 4. 2onsequently, for the

latter plates under central i.n-act we can read the values of RI,

R2 , R1 and R2  from Figures 13 to 17, or from Tables 4, 5 and

6. Hence, in commutation, we first select a contact time xc

then compute %lO from the last of equation (58). Next we read

R1 and R2 from these figures. Using equation (57) we

calulate the right side of the second of equations (55). If

this comes out to be x c/2 which we chose to start with, the

calculation is finished. A 3 is then calculated by the first of

equation (55). If it does not we try another x c/2 value.

Usually, two or three trials are sufficient to deter.aine x

satisfying the second of Equations (55). This method is faster

than the generalized Galerkin method. It is not, however, as

general and consequently, in some extreme cases of im.-act problems,

such as multiple imoact, it may not be as satisfactory as the

other method. 'omnutations are made for circular and rectangular

plates using forcing function shaes given by cases (a) and (c).

The results are plotted on figures 18 to 20 next to those obtained

by the Generalized Galerkin method.
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In the case of square olates, the result of K. Karas [61

obtained by the reliable stepwise integration method is plotted

in Fig. 19. An examination of these curves indicate that the

approximation offered to the impact problems is satisfactory

for all engineering *urooses. Further examole calculations are

given in Chapter 8.
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7. Deflection and Flexural Stresses

Deflection w can be calculated from equation (21) as soon

as F(t) is determined by one of the previous methods.

All equations obtained for contact force can be put into the

form:

F(t) = EF isin% it 0 6t T T

F(t) = 0

where F.i and % , are known or can be determnined from the

expressions of the contact force.

Substitution of the Equation (61) into equation (21)

leads to:

w (x, y, t) =(2 /M)Z c mn Cg(x,y)/g(x01ly0 )] (Fi/ 'I, 2)
.a, n, i

-(a I\. ) 2 1-1 E(X./a ) sinam t - sin~..tl,

For 061 t 6 T c(62)

m, n

+ Wmn cosa mn tl, For t bT c (63)

where:

mn ~ F/,2 mn 'i) 2  1 -(-l)' cosa mn T c1(%/amn)

(64)

Cmn = (F i/I- ~ 2 )1 - ('mn/% 1)2 1-1 (-l) i (\amn) sinamn Tc

The deflection at the point of contact is obtained by taking

x = x0 , Y = Yof in Equations (62) and (63).
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The flexural stresses ox, ay and shear stresses xz

and r can be determined from:

Ox = 6 /h2 xz 3Qx /2h

(65)

Gy = 6My/h 2  , y z  3Qy /2h o

where:
My=-~ + v'w ), My = -D(w + vw )
y= -D(w,xx , yy y ,yy XX

= -M = -D(i-,)w (66)

xy yx ,xy

w, -D(w, + wY Qy -D (wxxy YYX

Here Mx, My are bending moments, Mxy twisting moment,

Qx and Q are the transverse shear forces, all per urit length.

The flexural stresses contain second and third derivatives of

deflection, consequently, convergence is very slow. As a matter

of fact, Txy and -ryz diverge at the point of contact.

This fact is well known in plate theory. Bending stres.es

ax  and ay are slowly convergent everywhere. This is, of

course, the case even for the static deflection under a concentrated

load.

As pointed out in the 3revious resort, [11, the shaoe of

the contact force has little influence on the deflection of the

plate. As a matter of fact, if one considers the extreme case

of the Dirac a-function type contact force having the same impulse

as F(t) and olace it at the half of the contact time interval,

one finds that the deflection iroduced this way differs little
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from the actual deflection, Fig. 22. Of course, a shape closer

to the actual shape will give better results. Therefore, the

maximum error in deflection would be reached by considering a

8-function type of contact force. This fact also indicates that

the deflections cannot be used as a criterion of accuracy for the

shape of F (t). The situation for stresses is, of course,

different.

Deflection at the centers of a simply-su--orted square

plate and of a circular plate due to a central impact are

computed. The result is olotted in Figures 21 and 22. The

result for a 8-function type contact force for the case of the

square ?late is also -lotted in Fig. 22. Deflection given by

K. Karas [61, based on the reliablestep-by-step integration

method which is also drawn in Fig. 22, comtares very well with

these approximate solutions.
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8. Illustrative Examples

Jalculations for the case of central impact on simply-support-

ed beams are given in our previous reoort. In the present

report, examoles are worked out for the case of central impact on

(i) Simply-su-oorted circular plates

(ii) Simply-sup)orted rectangular plates

having size ratios a/b = 1, 2 and 4.

Both the Generalized Galerkin method as well as the

C, ollocation method are used to determine the contact force

and contact time. In all -roblems the striking body is assumed

to be a sphere. This, of course, is immaterial as far as the

theory is concerned, since all we need is to require that

the striking body should have a known radius of curvature at

the point of contact, in accordance with the Hertz theory of

impact. Once this radius of curvature is known, the Hertz

coefficient k can be determined F41. For a sphere striking

a -late the equation for k is oarticularly simple and is given

by:

k = 1.230520 (E2r)-i/3 (67)5

where L is the comaon moduli of elasticity of sphere and ?late

r s is the radius of the sihere. In all the calculations,

the following quantities are taken the same:

= 2.2 x 106 kg/cm2  v = 0.3

r. 1.O cm , h = 0.8 cm

vo  10C cm/sec , - 0.00796 kg/cm3

where v is the common ?oissors ratio of both plates and

spheres, h is the plate thickness and y is the common

weight density of the plate and the sphere. Hence k, for
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the examples of this report, is given by:

k - 0.727456 x 10
-4 cm/kg2 /3

(i) Circular Plate simply-supported at the outer edge:

Radius of the plate = a = 10cm.

Values of pma which are the roots of the frequency

equation (29) are tabulated in Table .. am and cm are

calculated from equations (17) and (30) where for the case

of central impact in expression (28) of gmn (r,e) we must take

n = 0 and yo = n/2. Hence for this case we have:

1 1 1 1 + V ,Pma)2

Pm Ta) - (Pma)1 [: - - - 2 1 -

pma J 1(Pma ) -(68)
+ I Jo(Pma) -i

am = (gD/p)1/2 PM

Values of cm are givon in Table 1 for v = 0.3.

In what follows the contact force and the contact time

are given in units o.f kilograms and seconds.

(a) Typical .alculation for Generalized Galerkin Method

We use shape (a), that is, we assume that f(x) = a1 sina2x

ist approximation: Take 4 - 0, then equation (47)

gives:

= 0.965517 , Y = 0.314688

2nd approximation:

To 1a 2 = (n y/a)3,5 4.64944 x 1C4 hence

%l0 =lO/a2 - 0.066897 - (Fig. 6) )

.................
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a1 - 5.35 , = -46.8

Hence, equation (47) gives:

= 0.837186, T0  a=2 4.6127 x 10 = 0.0674

y = 0.310553

Continue in this way until the difference between two sub6equent

values of y or X, or both are small enough. Even above,

the second approximation gives a very satisfactory result.

The values of the contact force and time are given by:

F(t) = F1sin %t F 1 
= 131.509 kg

% = 4.6127 x O 4sec -1 Tc = C.681 x 1O- 4sec.

where Tc is the contact time. The result is plotted on

Fig. 18.

(b) Generalized Galerkin Method having sha3e (d)

F(t) = E Fj sinkt, shape (d).

j=1,2,3

Three equations given by equation (49) when solved give:

F1 = 133,427 kg , F2 = 1.506 kg , F3 = -11.981 kg

Fmax = 145.408 kg , Tc = 0.679 x 10 - 4 sec

In this calculation,% of the foregoing calculation is used.

The result is plotted in Fig. 18.

(c) Typical 'alculation for the "ollocation Method

We use shape (c), that is:

F(t) A 3  sin 3 /2 nt/T c

Equation (55), upon substitution of equation (56), gives:
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A3 = nmv0 /Tc (d 2 + IR 2 )

32-1 2 aTc 5 = k3 m2 v 0  n (d 2 + 24R 2 ) (69)
I - 1 d1  -.2 -)3

ist approximation: Take . = 0, then Equation (69) gives:

A3 = 176.863 kg 0 T = 0.684964 x 10- 4sec.

2nd aogroximation: Calculate

I0 = loTc/n = C.067815 Fig. 13 -- +-R1 = 6.86,

R2 = 8.42

Substitute in equation (69) to obtain:

A3 = 146.457 kg , T = 0.648566 x 10 - 4 sec.

Zontinue this way until the difference between two subsequent

A3 or/and two subsequent Tc is suffici3ntly small to be

negligible. In the iresent calculation the fourth step gives

the following values:
3i

A3 = 146.763 kg

Tc = 0.645 x 10 - 4 sec.

The result is plotted in Fig. 18. It compares very well

with the result based on the calculation (c) above.

(ii) Rectangular Platds simply-supported at the outer edges:

The length, a, of all plates in x-direction is taken

constant, a = 20 cm. The calculations are then made for:

a/b =1 , a/b =2 and a/b -4.

where b is the length of the other edge. Circular frequency

-w ,
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amn are given by equation (36) that is:

2 2 2 12 2 2a
amn " a10 (m2 + n2 a 2/b) alo - (gDfp) 1 2

For the present problem, a,, 0.622068 x l04 sec. Cal-

culations are carried out using both methods with the results

given below:

Square plate a/b - 1

F = F1 sin % t (shape a)

Fl- 131.782 kg

% - 4.636 x 104 i/sec (Generalized Galerkin)

T- 0.678 x 10-4sec

F1  132.308 kg

- 4.871 x 104 1/sec (Collocation (a))

Tc - 0.645 x 10 - sec

F- Flsin 3/2  t

F1 = 146.763 kg

(Collocation (c))
- 4.875 1/sec

T - 0.644 x 10 4sec

cF
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The results are plotted in Fig. 19 next to the results of

K. Karas [6], based on the reliable step-by-step integration

method. The results compare very well with those of K. Karas.

Shape (c) of the Collocation method can not be distinguished

from the Karas result.

Rectangular plate with a/b- 2

F F1sinkt

F1 - 130.72 kg

% 4.693 x 1(Generalized 
Galerkin)

k = 4.693 x 1/lsec

Tc = 0.669 x 10'4sec

F1  132.680 kg

% 4.829 x 104 l/sec (Collocation (a))

Tc 0.650 x 10"4sec

F Flsin 3 / t

F1 - 145.967 kg
4 ~(Collocation (c) )

% - 4.844 x 104 1/sec (

Tc - 0.649 x 10" 4sec

See also Fig. 20.
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Rectangular plate with afb - 4.
I S

Only the functions R1  R 2 , R1  , , and 8 are

plotted. See Figures 7, and 14 to 17. No calculation is made

for the contact force.

Circular plate clamped at the outer edge:

Table 2 gives a list of quantities pma and cm the

first of which is the root of frequency equation (32) and the

second is given by the second of equations (33). The procedure

for the calculation of the contact force is identical to those

given above. No calculation has been carried out.

Deflection

The maximum deflection is computed for the circular plate

and square plate as a function of time and plotted in Figs. 21

and 22. In these computations, the expressions used for the

contact force are those obtained by the Generalized Galerkin

method, for the circular plate and collocation (c) for the

square plate; namely:

F(t) = 133.42735 sin (4.627699 x 104t) + 1.505767

sin (9.255398 x 104t) - 11.980813 sin (13.883097 x

104t) (Circular Plate)

F(t) - 146.763 sin 3/2 4.875287 x 104t 134.334

sin (4.875287 x 104t) - 14.926 sin (14.625861

x 104 t) kg (Square plate)
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Deflection obtained by use of a Dirac S-function type of contact

force, having the same impulse as the contact force, placed at

the mid-point of the contact interval is also calculated. That

is F(t) - F1 6(t - Tc/2) with F1 - X F(t)dt is used in place

of F (t). The result for the deflection is also plotted in Fig. 22.

Comparison is in favor of all the above shapes. The error

committed even in the extreme case, where the 8-function is

used, seems to be small.
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Table 1

pma , cm - Simply supported circular plates, (equation 29)

m pma Cm

1 2.2042 1.7397

2 5.4451 4.3309

3 8.6061 6.7909

4 11.7578 9.2557

5 14.9022 11.7270

6 18.0438 14.2004

7 21.2120 16.6556

8 24.3536 19.1249

9 27.4916 21.5844

10 30.6332 24.0505

11 33.7748 26.5164

12 36.9164 28.9909

13 40.0579 31.4606

14 43.1995 33.9271

15 46.3411 36.3924

16 49.4827 38.8631

17 52.6243 41.3186

18 55.7659 43.7099

19 58.9075 46.2670

,__ __ . .......
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Table 2

pma , cm - Jlamped circular plateS,(equation 32)

m PM a  c 4

1 0 0

2 3.1962 2.7348

3 6.3064 4.9073

4 9.4400 7.3957

5 12.5771 9.8695

6 15.7164 12.3374

7 18.8565 14.8025

8 21.9960 17.3082

9 25.1376 19.7519

10 28.2811 22.1122

11 31.42CC 24.6767

12 34.5613 27.1385

13 37.7022 29.7442

14 40.8438 32.0801

15 43.9851 34.5495

16 47.1266 37.0096

17 50.2682 39.4633

18 53.4097 41.9252

19 56.5513 44.3813

20 59.6929 46.8340
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Table 3

Functions RI, R2 for the Collocation Method, central

impact on simply supported circular plates, (equations 58-60)

%10 RI  R 2

.040 24.1985 20.3397

.080 12.0880 10.3370

.121 7.9639 6.8764

.160 5.9109 5.1983

.200 4.8442 4.1920

.240 3.9143 3.4747

.300 3.1871 2.7443

Table 4

Functions RI, R21 Ri, R for the Collocation Method, central

impact on simply supported square plates, a/b=l (equations58-60)

%10 R R2 Ri Rj

.08 6.4559 7.8811 7.3765 7.7704

.12 4.3901 5.2337 5.0066 5.1442

.15 --- --- --- 3.9988

.16 3.3022 3.8910 3.7524 3.8175

.20 2.6825 3.2444 3.0595 3.2532

.24 2.2370 2.5896 2.5528 2.5076

.30 1.7628 1.9699 1.9959 1.8594
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Table 5

Functions RI, R2, R{, Rj for the Collocation Method, central

impact on simply supported rectangular plates, a/b-2 (equations

58-60)

R1  R2  Ri

.06 4.3758 5.2139 5.0107 5.0937

.08 3.2067 3.7808 3.6464 3.6454

.12 2.1855 2.7429 2.4989 2.8142

.15 1.8068 2.3249 2.0810 2.4037

.18 1.5607 2.0117 1.8066 2.0628

.20 1.4267 1.7990 1.6501 1.8059

.24 1.2051 1.4247 1.3841 1.3580

.3u 0.9519 1.0679 1.0770 0.9893

Table 6

Functions Rl, R2, R{, Ri for the Collocation Method, central

impact on simply supported rectangular plates,a/b=4, (equations

58-60)

XlO R1  R2  RI '  R2#

.06 2.3161 2.9355 2.6751 2.8738

.08 1.7519 1.9833 1.9950 1.8150

.10 1.3657 1.3978 1.5080 1.1536

.12 1.0435 0.8344 1.1369 0.5779

.14 0.8102 0.5281 0.8584 0.2954

.16 0.6319 0.2723 0.6500 0.0417

.20 0.3326 0.0213 0.3085 -0.1410

.24 0.1620 -0.0011 0.2219 -0.0590

.32 "- 0.0047 --- 0.0141
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